

УНИВЕРСАЛЬНЫЙ БЛОК ЗАЩИТЫ ОДНОФАЗНЫХ АСИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ С ВОЗМОЖНОСТЬЮ ПЛАВНОГО ПУСКА

УБ3-115

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ПАСПОРТ

УБЗ-115 NOVATEK-ELECTRO

СОДЕРЖАНИЕ

ПРЕДОСТЕРЕЖЕНИЯ	4
Введение	4
1. Назначение	4
2. Технические характеристики и условия эксплуатации	4
2.1. Основные технические характеристики	4
2.2. Условия эксплуатации	5
3. Устройство и работа	5
3.1. Устройство	5
3.1.1. Конструкция	6
3.1.2. Индикация и управление	6
3.2. Работа	7
3.2.1. Принцип действия	7
3.2.2. Измеряемые и вычисляемые параметры	8
3.3. Функции защиты	8
3.3.1. Виды защит двигателя	9
3.3.2. Максимальная токовая защита	9
3.3.3. Минимальная токовая защита	9
3.3.4. Защиты по напряжению	10
3.3.5. Затянутый пуск и блокировка ротора	10
3.3.5.1. Затянутый пуск	10
3.3.5.2. Блокировка ротора	10
3.3.6. Защита по максимальной частоте сети	10
3.3.7. Защита по минимальной частоте сети	11
3.3.8. Защита по тепловой перегрузке	11
3.4. Плавный пуск	11
4. Техническое обслуживание и меры безопасности	12
4.1. Меры безопасности	12
4.2. Порядок технического обслуживания УБЗ-115	13
5. Подключение УБЗ-115	13
5.1. Общие указания	13
5.2. Подключение прибора	14
6. Использование УБЗ-115	15
6.1. Общие сведения	15
6.2. Работа УБЗ-115 до включения двигателя	15
6.3. Работа УБЗ-115 после отключения двигателя из-за аварии	15
6.4. Работа УБЗ-115 после пуска двигателя	16
6.5. Работа УБЗ-115 с дистанционным управлением по входу внешнего датчика	16 17
7. Программирование 7.1. Общие сведения	17
	17
7.1.1. Полный список программируемых параметров 7.1.2. Просмотр измеряемых и вычисляемых параметров	19
7.1.2. Просмотр измеряемых и вычисляемых параметров 7.1.3. Изменение параметров УБЗ-115	19
7.1.3. Изменение параметров 9.63-113 7.1.4. Восстановление заводских установок	19
· · · · · · · · · · · · · · · · · · ·	20
7.2. Порядок программирования 7.2.1. Установка номинального тока двигателя	20
8. Комплектность	20
9. Срок службы и гарантия изготовителя	20
10. Транспортирование	20
Приложение А	21

ПРЕДОСТЕРЕЖЕНИЯ

Перед использованием прибора внимательно ознакомьтесь с Руководством по эксплуатации.

Перед подключением прибора к электрической сети выдержите его в течение двух часов при условиях эксплуатации.

Для чистки прибора не используйте абразивные материалы или органические соединения (спирт, бензин, растворители и т.д.).

ЗАПРЕЩАЕТСЯ САМОСТОЯТЕЛЬНО ОТКРЫВАТЬ И РЕМОНТИРОВАТЬ ПРИБОР. Компоненты прибора могут находиться под напряжением сети.

ЗАПРЕЩАЕТСЯ ЭКСПЛУАТАЦИЯ ПРИБОРА С МЕХАНИЧЕСКИМИ ПОВРЕЖДЕНИЯМИ КОРПУСА.

НЕ ДОПУСКАЕТСЯ ПОПАДАНИЕ ВОДЫ В ПРИБОР И ЭКСПЛУАТАЦИЯ ПРИБОРА В УСЛОВИЯХ ВЫСОКОЙ ВЛАЖНОСТИ.

При соблюдении правил эксплуатации устройство безопасно для использования.

ВВЕДЕНИЕ

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, порядком эксплуатации и обслуживания Универсального блока защиты однофазного асинхронного электродвигателя УБЗ-115 (в дальнейшем по тексту «прибор» или «УБЗ-115»).

Термины и сокращения:

- АПВ Автоматическое Повторное Включение;
- Двигатель однофазный асинхронный электродвигатель;
- AB Автоматический Выключатель;
- Дисплей трехразрядный индикатор;
- Мигание индикатора включение и отключение индикатора с периодом 0,2 секунды;
- Вспыхивание индикатора кратковременное включение индикатора на время 0,2 секунды с периодом повторения 1,2 секунды.

1 НАЗНАЧЕНИЕ

Универсальный блок защиты однофазных асинхронных электродвигателей УБЗ-115 является микропроцессорным устройством.

УБЗ-115 предназначен для защиты однофазных асинхронных электродвигателей мощностью до 5,5 кВт (в сетях 220 В, 50 Гц).

Прибор обеспечивает постоянный контроль параметров сетевого напряжения и тока, потребляемого двигателем.

В УБЗ-115 предусмотрен внешний вход для дистанционного пуска или остановки двигателя, и функция "плавного пуска" двигателя до 5 секунд.

Предусмотрена возможность установки пусковой и рабочей емкости непосредственно в корпус прибора.

УБЗ-115 обеспечивает защиту в следующих ситуациях:

- ✓ некачественное сетевое напряжение;
- ✓ механические перегрузки двигателя (определяемые по току, потребляемому двигателем);
- ✓ исчезновение нагрузки на валу двигателя ("сухой ход");
- ✓ затянутый пуск или блокировка ротора;
- ✓ тепловая перегрузка (по тепловой модели двигателя).

По каждому типу защиты возможно разрешение или запрет автоматического повторного включения (АПВ) двигателя.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ И УСЛОВИЯ ЭКСПЛУАТАЦИИ

2.1 Основные технические характеристики

Основные технические характеристики указаны в таблице 1.

Таблица 1

Номинальное напряжение питания однофазное, В	220
Напряжение, при котором сохраняется работоспособность, В	130 – 300
Защита по токовой перегрузке (токи больше 40 А)	есть
Автоматический выключатель, А	32 (класс В)

Продолжение таблицы 1

	•				
Частота п	итающей сети, Гі				48 – 62
Мощность	двигателя, кВт,	не более			5,5
Номиналь	ный ток двигател	ıя, A, не более			25
Максимал	ьный допустимы	й пусковой ток д	вигателя, А		40
	определения пор ного, не более	ОТ	3		
	определения пор	2	3		
	с возврата по на	,	4		
	анения данных, л		Menee		10
	емый ток (при на		\ м\ не более		200
Масса, кг,	· · · · · · · · · · · · · · · · · · ·	пряжении 220 б), MA, HE OOTIEE		2,6
	ые размеры, мм				252 x 249 x 140
		DECUIAG.			
Бход дист	анционного упра		сухой контакт		
Выход упр	авления двигате	реле 40 А, 240 В			
Di IVOT TO	TICEIOLIOLING EVOVO	симистор 40 А, 800 В			
выход под	цключения пуско	симистор 40 А, 800 В			
Назначені	ие устройства	Аппаратура управления			
Номинови		и распределения			
	ный режим рабо		продолжительный IP30		
	ащиты устройств				
	иты от поражени		01		
	еское исполнени		УХЛ3.1		
	ая степень загря:				
	перенапряжения		150		
	ное напряжение	450			
	ное импульсное	2,5			
Рабочее г		произвольное			
	Характерис				
Cos φ	Макс. ток при U~ 240 В	Макс. мощн.	Макс. напр.~	Материал контактов	
1,0	40 A	AgSnO			
	ионный ресурс в	7200 BA ыходных контакт	<u> </u>		
	рический ресурс		100 тыс		
	нический ресурс,			10 мил	
	- 17/17	-	1		

Вредные вещества в количестве, превышающем предельно допустимые концентрации, отсутствуют.

2.2 Условия эксплуатации

Прибор предназначен для эксплуатации в следующих условиях:

- температура окружающей среды от минус 30 до +55 °C;
- температура хранения от минус 45 до +70 °C;
- атмосферное давление от 84 до 106,7 кПа;
- относительная влажность воздуха (при температуре 35 °C) 30...80 %.

3 УСТРОЙСТВО И РАБОТА

3.1 Устройство

Соответствие начертания символов на дисплее буквам латинского алфавита приведено на рисунке 1.

AbCdEFGH, JELAnoP9r5tUvwXYZ

Рисунок 1 – Соответствие начертания символов на дисплее буквам латинского алфавита

3.1.1 Конструкция

Прибор конструктивно выполнен в металлическом корпусе, предназначенном для крепления на вертикальную поверхность. Чертеж корпуса с габаритными и установочными размерами приведен на рисунке 2.

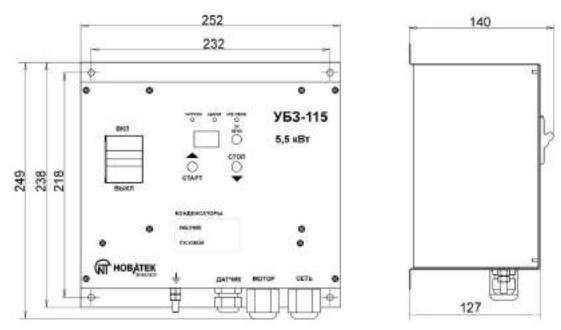
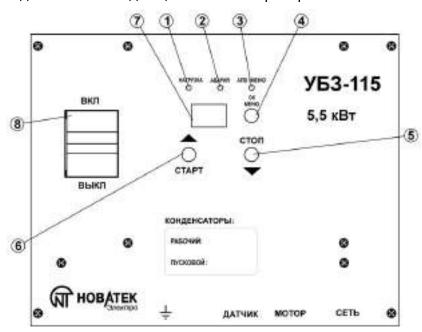



Рисунок 2 – Габаритные размеры прибора

3.1.2 Индикация и управление

На рисунке 3 приведен внешний вид лицевой панели прибора УБЗ-115.

- 1 индикатор **НАГРУЗКА** (мигает, когда производится пуск двигателя, горит, когда двигатель запущен, вспыхивает, когда двигатель остановлен по внешнему входу);
- 2 индикатор **АВАРИЯ** (горит, когда присутствуют аварии);
- 3 индикатор отсчета АПВ и режима МЕНЮ (мигает, когда идет отсчет времени АПВ, вспыхивает, когда отсчет времени АПВ завершен и АПВ разрешено, горит, когда пользователь зашел в меню);
- 4 кнопка входа в режим программирования и подтверждения ввода параметра;
- 5 кнопка СТОП, в режиме программирования ВНИЗ;
- 6 кнопка СТАРТ, в режим программирования ВВЕРХ;
- 7 трехразрядный индикатор (дисплей);
- 8 автоматический выключатель.

Рисунок 3 – Лицевая панель УБЗ-115

Управление прибором осуществляется следующим образом:

- для включения двигателя нажать
- для отключения двигателя нажать
- для сброса всех аварий нажать и удерживать в течение 7 с кнопку [[11]];
- для входа в режим изменения параметров нажать и удерживать в течение 7 с кнопку при этом должен загореться индикатор **АПВ / МЕНЮ** (рисунок 3 поз.3);
 - переключение между параметрами кнопки [];
 - для входа в параметр кнопка Ш;
 - для сохранения измененного параметра кнопка 🕮 ;
 - для выхода без сохранения одновременно нажать + ;;
 - для выхода из меню одновременно нажать + ;;
- для просмотра измеряемых и вычисляемых параметров однократно нажать кнопку
 - переключение между параметрами кнопки ;;
 - о для входа в параметр кнопка Ш;
 - о для выхода из параметра кнопка 🔠;
 - для выхода из меню одновременно нажать + ;
- при отсутствии нажатий любой из кнопок в течение 20 с, на дисплее отобразится надпись "ĒūŁ" (в течение 1 с), и прибор перейдет в исходное состояние.

3.2 Работа

3.2.1 Принцип действия

В процессе работы УБЗ-115 производит постоянное измерение и контроль сетевого напряжения и тока, потребляемого двигателем. Исходя из полученных данных, рассчитывается тепловая модель двигателя. При выходе параметров за допустимые пределы УБЗ-115 отключает двигатель, и включает снова (через время АПВ), при условии, что параметры вернулись в норму и АПВ не запрещены.

УБЗ-115 не нуждается в дополнительном питании – контролируемое напряжение является одновременно напряжением питания.

УБЗ-115 может работать в двух режимах: ручной и автоматический.

При "¬С¬"=2 (таблица 7) включение и отключение двигателя производится оператором непосредственно с лицевой панели прибора. УБЗ-115 отключает двигатель в случаях выхода параметров за допустимые пределы

При "¬С¬"=0 включение двигателя производится непосредственно самим прибором УБЗ-115, через время АПВ (или 2 секунды при "¬С¬"=1) после подачи напряжения питания. УБЗ-115 отключает двигатель в случаях выхода параметров за допустимые пределы и снова включит (через время АПВ), когда параметры вернутся в норму.

В зависимости от установленного параметра " ¬ С Р" (таблица 7) может использоваться внешний вход для пуска и остановки двигателя:

- при "¬ [Р" = 0 внешний вход отключен;
- при "¬СР"=1 замыкание контактов приведет к пуску двигателя, а размыкание к остановке:
- при "¬СР"=2 размыкание контактов приведет к пуску двигателя, а замыкание к остановке.

При пуске двигателя может применяться функция плавного пуска на основе фазного метода регулирования (до 5 с).

Плавный пуск позволяет снизить пусковой ток и падение напряжения напряжения во время включения двигателя (пуска).

3.2.2 Измеряемые и вычисляемые параметры

Измеряемые и вычисляемые параметры приведены в таблице 2.

Таблица 2

НАЗВАНИЕ	МНЕМОНИКА	ДИАПАЗОН	точность
Действующий ток, А	í.R	0,1 150	2 %
Наибольшее значение действующего тока, А	ıRō	0,1 150	2 %
Среднее значение действующего тока, А	, RG	0,1 150	2 %
Наибольшее значение среднего тока, А	ıGō	0,1 150	2 %
Ток перегрузки, А	ıRο	0,1 150	2 %
Пусковой ток двигателя, А	,5	0,1 150	2 %
Время пуска, с	£5	0,1 999	1 %
Действующее напряжение, В	UA	100 450	3 B
Частота сети, Гц	Fr9	45 65	1 %
Тепловой баланс двигателя, %	PE	0 999	
Косинус угла между напряжением и током	[-5	0,00 1,00	5 %
Полная мощность, кВА	PaF	0,00 99,9	5 %
Активная мощность, кВт	PoR	0,00 99,9	5 %
Реактивная мощность, кВар	Poq	0,00 99,9	5 %
Время АПВ, с	ŁRS	0 999	1 c
Время работы до отключения по перегреву, с	Łob	0 999	1 c
Время ожидания после отключения по перегреву, с	£E6	0 999	1 c
*Состояние внешнего входа	10 P	ON OFF	

^{*}Соответствует активному состоянию внешнего входа в зависимости от установленного значения параметра "¬ГР".

3.3 Функции защиты

В УБЗ-115 предусмотрена защита от перенапряжения сети. Двигатель автоматически отключается при напряжении выше 310 В. На дисплей выводится сообщение об аварии "Е "О" ("Перенапряжение сети " таблица 6). Повторный пуск после восстановления нормального напряжения возможен только с лицевой панели прибора.

В УБЗ-115 предусмотрена защита силовых элементов прибора от токовой перегрузки. При превышении током, потребляемым двигателем, значения выше 40 А, произойдет автоматическое отключение двигателя

При возникновении аварии по токовой перегрузке на дисплей выводится сообщение "ЕоF" (таблица 6) и прибор блокируется на время 60 секунд. Только по истечении этого времени можно повторно запустить двигатель с лицевой панели прибора.

УБЗ-115 определяет наличие токов двигателя при отключенном реле нагрузки. В этом случае на дисплее отображается сообщение об аварии "Е ப " (таблица 6), запрещается АПВ и прибор блокируется до тех пор, пока авария не исчезнет. Повторный пуск двигателя после исчезновения аварии возможен только с лицевой панели прибора.

УБЗ-115 NOVATEK-ELECTRO

3.3.1 Виды защит двигателя

УБЗ-115 обеспечивает следующие виды защит двигателя:

- максимальная токовая;
- минимальная токовая ("сухой ход");
- максимальное фазное напряжение;
- минимальное фазное напряжение;
- затянутый пуск и блокировка ротора;
- максимальная частота сети;
- минимальная частота сети;
- тепловая перегрузка.

3.3.2 Максимальная токовая защита

Защита имеет выдержку времени, которая может быть независимой (постоянной) или зависимой: **SIT** – обратно зависимой, **VIT(LTI)** – очень обратно зависимой. Графики приведены в приложении A.

Рисунок 4 – Принцип защиты с независимой выдержкой времени

При защите с независимой выдержкой времени двигатель отключается, если потребляемый им ток превысил заданный **Is** в течение времени **T** (параметр " in L").

<u>Пример.</u> При " **— 5**" = 4,0; " **— —**" = 10; " **— —**" = 10,0 двигатель выключится через 10 с, после того как потребляемый им ток превысит 40 А.

Работа защиты с зависимой выдержкой времени соответствует стандартам МЭК 60255-3 и BS 142.

In соответствует параметру **Ind** (номинальный ток двигателя).

Т соответствует параметру " (постоянная времени защиты). Постоянная времени Т рассчитывается исходя из 10*In.

<u>Пример.</u> При " п d" = 10; " п b" = 10,0 двигатель выключится через 16,7 с, при потребляемом токе равным 40 A.

Рисунок 5 – Принцип работы защиты с зависимой выдержкой времени

Параметры " 🙃 5", " то d" и " то E" описаны в таблице 7.

3.3.3 Минимальная токовая защита

Защита начинает функционировать, когда потребляемый двигателем ток падает ниже уставки (параметр " ¬¬¬¬¬") и отключает двигатель, когда время этого падения больше заданного (параметр " ¬¬¬¬¬).

Защита не активна, когда потребляемый двигателем ток меньше 10 % **In** (параметр " **Ind**", когда уменьшение тока вызвано отключением двигателя, а не уменьшением его нагрузки).

Защита имеет свою независимую выдержку времени АПВ (параметр " $\vdash \neg \sqcap$ ").

В случае возникновения аварии, автоматическое повторное включение двигателя произойдет:

после выдержки времени "Е ¬ Я", при условии что "Е ¬ Я "> "Я Б Е" и АПВ разрешено;

после выдержки времени "ЯБЕ", при условии что "Е¬Я" < "ЯБЕ" и АПВ разрешено;

При запрещенном АПВ (параметр "H5г" = 0) автоматического повторного включения двигателя не будет.

При использовании плавного пуска (параметр " ^{5}EP "=1), защита блокируется на время выполнения плавного пуска (параметр " ^{5}SE ") и снова начинает функционировать после его завершения.

Параметры " ¬¬¬¬, " ¬¬¬¬, "Б¬¬¬, "ЯБЪ", "ЯБЪ", "БЪР" и "ББЪ" описаны в таблице 7.

3.3.4 Защиты по напряжению

Перед включением двигателя УБЗ-115 проверяет соответствие входного напряжения уставкам пользователя и, в зависимости от его значения, разрешает либо запрещает пуск двигателя. После пуска двигателя контроль по напряжению сохраняется, но решение на отключение принимается по токам.

К защитам по напряжению относятся:

- Максимальное фазное напряжение (срабатывает, если напряжение сети превысит значение параметра "Un 5" в течение времени, заданного параметром "Un 5");
- Минимальное фазное напряжение (срабатывает, если значение напряжения сети снизится ниже значения параметра "Un5" в течение времени, заданного параметром "Unt").

Параметры "Un5", "Un5", "Unt" и "Unt" описаны в таблице 7.

3.3.5 Затянутый пуск и блокировка ротора

Принцип работы защиты по затянутому пуску и блокировке ротора показан на рисунке 6.

3.3.5.1 Затянутый пуск

Во время пуска двигателя защита срабатывает, когда потребляемый двигателем ток превысит значение уставки **Is** (параметр "LLE" таблица 7) в течение периода времени большего, чем **ST** (параметр "LLE" таблица 7).

3.3.5.2 Блокировка ротора

После завершения пуска двигателя (потребляемый двигателем ток опустился ниже уровня 120 % от номинального тока) УБЗ-115 переходит к контролю возможной блокировки ротора. Защита срабатывает, когда потребляемый двигателем ток больше значения уставки **Is** (параметр "LLS") в течение периода времени большего, чем **LT** (параметр "LbL" таблица 7).

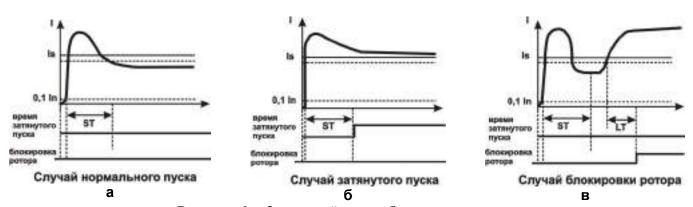


Рисунок 6 – Затянутый пуск и блокировка ротора

3.3.6 Защита по максимальной частоте сети

Двигатель отключится, когда значение частоты питающей сети превысит значение параметра "F ¬ 5" (таблица 7) на период времени больший, чем значение параметра "F ¬ 5" (таблица 7) и снова включится, когда частота питающей сети будет меньше значения параметра "F ¬ 5".

УБЗ-115 NOVATEK-ELECTRO

3.3.7 Защита по минимальной частоте сети

Двигатель отключится, когда значение частоты питающей сети снизится ниже значения параметра "Fn5" (таблица 7) на период времени больший, чем значение параметра "Fn5" (таблица 7) и снова включится, когда значение частоты питающей сети превысит значение параметра "Fn5".

3.3.8 Защита по тепловой перегрузке

Защита по тепловой перегрузке выполнена на основе решения уравнения теплового баланса двигателя при следующих допущениях:

- до первого включения двигатель был холодным;
- при работе двигатель выделяет тепло, пропорциональное квадрату тока;
- после отключения двигателя его остывание идет по экспоненте.

Для работы защиты необходимо ввести время срабатывания при двукратной перегрузке **T2** (параметр "**b 2 b**" таблица 7). Токо-временная характеристика при разных значениях **T2** приведена на рисунке 7.

В таблице 3 приведена токо-временная характеристика для стандартного рекомендуемого значения **Т2** (60 с при двукратной перегрузке).

Таблица 3

I / In	1,1	1,2	1,4	1,7	2	2,7	3	4	
Т	365	247	247 148 88,6 60 36,4 24,6 13,5						
I – значение тока, потребляемого двигателем, А;									
In – номинальное значение тока (параметр " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '									

Для вращающихся машин охлаждение более эффективно во время работы, чем во время остановленного двигателя, для учета этого факта используется параметр "b = 25" (кратность увеличения постоянной охлаждения при остановленном двигателе, таблица 7).

После отключения двигателя по тепловой перегрузке при разрешенном АПВ, двигатель включится повторно через время, большее чем:

- время теплового гистерезиса, т.е., двигатель должен остыть до 66 % от накопленного тепла:
- время АПВ.

Подбирая разные значения времени АПВ с учетом теплового гистерезиса, можно добиться ограничения количества пусков в единицу времени, т.к. прибор запоминает количество тепла, выделяемое при пуске двигателя, и заблокирует пуск перегретого двигателя.

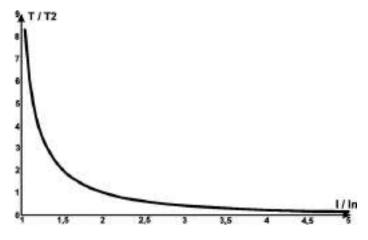
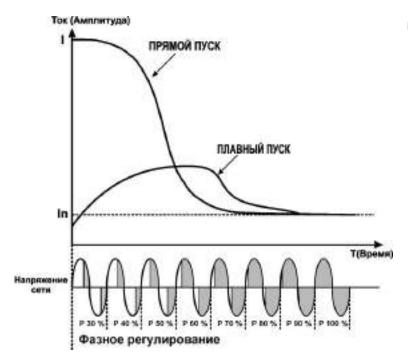


Рисунок 7 — Токо-временная характеристика

где: I / In – кратность тока относительно

- **/ III** кратность тока относительно номинального;
- Т / Т2 фактическое время срабатывания относительно Т2 (времени срабатывания при двукратной перегрузке).


3.4 Плавный пуск двигателя

В УБЗ-115 применяется плавный пуск двигателя на основе метода фазного регулирования. Применение плавного пуска позволяет:

- уменьшить ударные перегрузки путем снижения пусковых токов;
- снизить вероятность перегрева двигателя;

- повысить срок службы двигателя;
- устранить рывки в механической части привода в момент пуска двигателя;
- снизить шум и вибрацию двигателя;
- снизить потребляемую мощность.

На рисунке 8 представлен принцип работы функции плавного пуска.

где:

T – время пуска (параметр "55 L");

I – ток, потребляемый двигателем;

In – номинальный ток двигателя (параметр " іп □");

Р – мощность фазового регулятора. Начальная мощность задается параметром "5 5 Р".

Параметры "55Е" и "55Р" описаны в таблице 7.

Рисунок 8 – Принцип работы функции плавного пуска

4 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И МЕРЫ БЕЗОПАСНОСТИ

- 4.1 Меры безопасности
- 4.1.1 МОЩНОСТЬ ПОДКЛЮЧАЕМОГО ДВИГАТЕЛЯ НЕ ДОЛЖНА ПРЕВЫШАТЬ УКАЗАННУЮ В ДАННОМ РУКОВОДСТВЕ ПО ЭКСПЛУАТАЦИИ, Т.К. ЭТО МОЖЕТ ВЫЗВАТЬ ПЕРЕГРЕВ КОНТАКТНОЙ ГРУППЫ И ВОЗГОРАНИЕ ИЗДЕЛИЯ.
- 4.1.2 В УБЗ-115 ИСПОЛЬЗУЕТСЯ ОПАСНОЕ ДЛЯ ЖИЗНИ НАПРЯЖЕНИЕ. При устранении неисправностей, техническом обслуживании, монтажных работах необходимо отключить прибор и подключенные к нему исполнительные механизмы от сети.
- 4.1.3 Прибор не предназначен для эксплуатации в условиях вибрации и ударов.
- 4.1.4 Не допускается попадание влаги на входные контакты клеммных блоков и внутренние электроэлементы прибора.
- 4.1.5 Запрещается использование прибора в агрессивных средах с содержанием в воздухе кислот, щелочей, масел и т. п.
- 4.1.6 Подключение, регулировка и техническое обслуживание прибора должны производиться только квалифицированными специалистами, изучившими настоящее Руководство по эксплуатации.
- 4.1.7 При эксплуатации и техническом обслуживании необходимо соблюдать требования нормативных документов: ГОСТ 12.3.019-80, "Правил технической эксплуатации электроустановок потребителей" и "Правил техники безопасности при эксплуатации электроустановок потребителей".

НЕ ДОПУСКАЕТСЯ ПРОИЗВОДИТЬ КАКИЕ-ЛИБО РАБОТЫ БЕЗ ПОЛНОГО ОТКЛЮЧЕНИЯ ПРИБОРА ОТ СЕТИ. При остановленном двигателе УБЗ-115 не обеспечивает его полного изолирования от электрической сети, поэтому на двигателе может присутствовать сетевое напряжение.

4.2 Порядок технического обслуживания УБЗ-115

Рекомендуемая периодичность технического обслуживания – каждые шесть месяцев.

Техническое обслуживание прибора состоит из визуального осмотра, в ходе которого проверяется надежность подсоединения проводов, отсутствие сколов и трещин на его корпусе.

При выполнении технического обслуживания прибора соблюдать все меры безопасности, изложенные в пункте 4.1.

5 ПОДКЛЮЧЕНИЕ УБЗ-115

5.1 Общие указания

Подготовить кабели для:

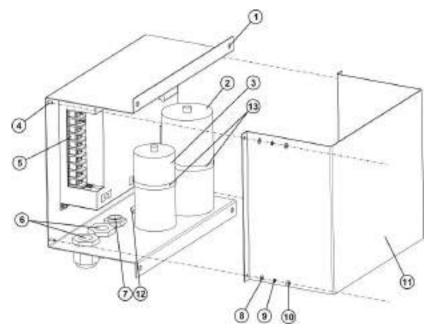
- соединения прибора с двигателем (не менее 4 мм²);
- соединения прибора с источником питания (сеть 220 В 50 Гц, не менее 4 мм²);
- соединения прибора с внешним датчиком (сухой контакт, не менее 0,75 мм²);
- соединения прибора с пусковым конденсатором (не менее 1,5 мм²);
- соединения прибора с рабочим конденсатором (не менее 1,5 мм²);
- заземления корпуса прибора (не менее 4 мм²).

Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами, концы которых перед соединением следует тщательно зачистить.

Приблизительную емкость рабочего конденсатора можно получить из расчета 2,5 мкФ на каждые 100 Вт мощности двигателя. Пусковая емкость должна быть в 2 – 3 раза больше рабочей. Рабочее напряжение конденсаторов должно быть не ниже 400 В.

ВНИМАНИЕ! Конденсаторы должны быть предназначены для работы с электродвигателями.

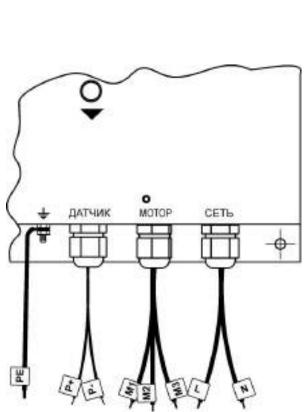
В таблице 4 приведены некоторые номиналы емкостей под определенную мощность двигателя.


Таблица 4

Мощность двигателя, кВт	0,12	0,18	0,25	0,37	0,55	0,75	1,1	1,5	2,2	3,0	4,0	5,5
Ср, мкФ	3	5	7	10	15	20	30	40	60	80	100	140
Сп. мкФ	7	10	15	25	30	40	60	90	120	170	220	310

ВНИМАНИЕ! Максимальное рабочее напряжение проводов, предназначенных для подключения сети питания и внешнего силового оборудования, должно быть не менее 400 В. КОРПУС ПРИБОРА ДОЛЖЕН БЫТЬ ОБЯЗАТЕЛЬНО ЗАЗЕМЛЕН!

На рисунке 9 представлена схема монтажа прибора.



- 1 крепежное отверстие (4 шт);
- 2 пусковой конденсатор;
- 3 рабочий конденсатор;
- 4 винт М3 (4 шт);
- 5 клеммы подключения;
- 6 уплотнители проводов подключения PG-16 (2 шт);
- 7 уплотнитель провода подключения PG-11 (1 шт);
- 8 шайба М3 (4 шт);
- 9 гровер М3 (4 шт);
- 10 гайка M3 (4 шт);
- 11 задняя крышка отсека подключения;
- 12 болт заземления корпуса прибора;
- 13 хомут монтажный.

Рисунок 9 — Схема монтажа прибора

5.2 Подключение прибора

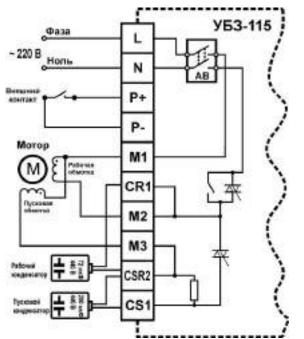
В зависимости от используемого двигателя подключение производится по одной из следующих схем, представленных на рисунке 10.

А – наименование проводов подключения

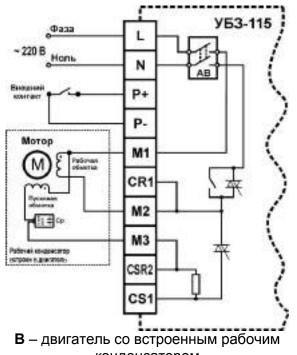
L – Фаза 220 В;

N – Ноль 220 В;

М1 – общий провод двигателя;


М2 – рабочая обмотка;

М3 – пусковая обмотка;


Р+ – вход внешнего датчика "+";

Р- – вход внешнего датчика "-";

РЕ – заземление.

Б – двигатель без встроенных конденсаторов

конденсатором

Рисунок 10 — Схемы подключения двигателя

При использовании однофазных двигателей со встроенными конденсаторами, подключение производится к проводам "М1" и "М2".

ВНИМАНИЕ! ВХОД ВНЕШНЕГО ДАТЧИКА ГАЛЬВАНИЧЕСКИ СВЯЗАН С ЭЛЕКТРИЧЕСКОЙ СЕТЬЮ И НАХОДИТСЯ ПОД ЕЕ ПОТЕНЦИАЛОМ.

ЗАПРЕЩАЕТСЯ ИСПОЛЬЗОВАНИЕ В КАЧЕСТВЕ ВНЕШНЕГО КОНТАКТА "ПОГРУЖНЫХ ДАТЧИКОВ", СТЕПЕНЬ ЗАЩИТЫ КОТОРЫХ МЕНЕЕ ІР68.

ИСПОЛЬЗОВАНИЕ "КНОПОК ЗАПРЕЩАЕТСЯ В КАЧЕСТВЕ ВНЕШНЕГО **KOHTAKTA** УПРАВЛЕНИЯ", С КЛАССОМ ЗАЩИТЫ ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ МЕНЕЕ II.

УБ3-115 **NOVATEK-ELECTRO**

6 ИСПОЛЬЗОВАНИЕ УБЗ-115

6.1 Общие сведения

Примечание – УБЗ-115 поставляется при выставленном номинальном токе равном нулю. В этом случае двигатель пускаться не будет до установки номинального тока двигателя (параметр ind).

6.2 Работа УБЗ-115 до включения двигателя

После подачи питания (первое включение) перед пуском двигателя в течении двух секунд на дисплей выводится мигающая надпись " $5 \, t^3$ ", в течение этого времени УБЗ-115 проверяет качество сетевого напряжения.

В зависимости от значения параметра " 5 Р" (таблица 7) на дисплей выводится:

- 0 значение сетевого напряжения;
- 1 значение частоты сети;
- 2 обратный отсчет времени АПВ.

При некачественном сетевом напряжении двигатель пускаться не будет, а на дисплей выводится соответствующий код аварии и загорается индикатор **АВАРИЯ** (рисунок 3 поз.2).

Во время отсчета АПВ мигает индикатор **АПВ** (рисунок 3, поз. 3). Если по окончании отсчета времени АПВ присутствуют активные аварии, индикатор **АПВ** (рисунок 3, поз. 3) начинает вспыхивать с периодом 1,2 секунды, указывая, что после исчезновения активной аварии двигатель будет запущен (АПВ разрешено).

При отсутствии запрещающих работу двигателя факторов пуск двигателя определяется значениями параметров "¬С¬" (управление двигателем, таблица 7) и "БСР" (режим пуска двигателя, таблица 7):

- "¬¬¬"= 0 пуск двигателя произойдет автоматически через время АПВ (при отсчете времени АПВ мигает индикатор АПВ);
- "¬С "= 1 пуск двигателя произойдет автоматически через 2 секунды;
- "¬С г"= 2 пуск двигателя произойдет после нажатия кнопки [[[]]];
- "与とド"= 0 пуск без применения плавного пуска;
- «ЫЫР»= 1 пуск с применением плавного пуска.

Во время пуска двигателя (пуск двигателя определяется по факту превышения током, потребляемым двигателем, уровня 120% от номинального тока) индикатор **НАГРУЗКА** (рисунок 3 поз.1) мигает с частотой 4 Гц. К пусковой обмотке двигателя подключается "пусковой конденсатор" **Сп**, на время, указанное в параметре " (таблица 7), или до момента обнаружения окончания пуска двигателя (ток, потребляемый двигателем, снизился ниже уровня 120 % от номинального тока). По окончанию пуска индикатор **НАГРУЗКА** горит постоянным свечением.

Повторный пуск (пуск после остановки) двигателя возможен только по истечении минимального времени останова двигателя. Это время фиксированное (5 секунд), предназначено для защиты прибора и двигателя от частых пусков.

6.3 Работа УБЗ-115 после отключения двигателя из-за аварии

При возникновении аварии двигатель отключается, на дисплей выводится код аварии (отображение кода аварии чередуется со значением аварии с интервалом в 2 секунды) и загорается индикатор **АВАРИЯ** (рисунок 3 поз.2). Индикатор **АВАРИЯ** (рисунок 3 поз.2) мигает - когда присутствует хоть одна активная авария, горит — когда активные аварии отсутствуют, но происходили некоторое время назад.

Работа УБЗ-115 в этом случае аналогична работе до включения двигателя, параметр "¬С¬" игнорируется, а пуск двигателя происходит через время АПВ. Если во время отсчета АПВ нажать кнопку , то произойдет запрет повторного пуска двигателя (индикатор АПВ погаснет, рисунок 3, поз. 3), отсчет АПВ при этом продолжается. Для разрешения пуска двигателя однократно нажать кнопку ... Пуск двигателя произойдет после отсчета оставшегося времени АПВ.

Если по окончании отсчета времени АПВ присутствуют активные аварии, индикатор **АПВ** (рисунок 3, поз. 3) начинает вспыхивать с периодом 1,2 секунды, указывая, что после исчезновения активной аварии двигатель будет запущен (АПВ разрешено).

Если после аварии АПВ запрещено (параметр "Н 5 г" = 0), пуск двигателя невозможен до выключения питания УБЗ-115 или нажатия и удержания кнопки, осуществляющей сброс всех аварий больше 7 с). Сброс всех аварий также сбрасывает отсчет времени АПВ. Пуск двигателя после сброса всех аварий осуществляется нажатием кнопки — при условии, что активные аварии отсутствуют.

После сброса всех аварий, при условии, что активные аварии присутствуют, на дисплее продолжают отображаться только активные аварии, при этом пуск двигателя заблокирован.

При возникновении нескольких аварий, отображение на дисплее производится последовательно друг за другом с интервалом в 4 секунды.

В таблице 5 показан пример вывода двух аварий ("Минимальный ток фазы" и "Минимальное напряжение сети").

Таблица 5

Дисплей	Ein	060	EUn	150	Ein	080
Время, с	0	2	4	6	8	10

Примечание – При возникновении аварии по токовой перегрузке $\mathsf{E} \, \mathsf{c}^{\,\mathsf{F}}$, сброс аварии возможен только по истечении времени блокировки прибора 60 секунд.

6.4 Работа УБЗ-115 после пуска двигателя

УБЗ-115 осуществляет контроль напряжения и тока. На дисплей выводится значение тока, потребляемого двигателем.

Отключение двигателя произойдет при срабатывании любой из защит, указанных в таблице 6, кроме защит "Максимальное напряжение сети" и "Минимальное напряжение сети". В случае возникновения аварий по напряжению, их мнемоника отображается на дисплее, но двигатель не отключается.

Таблица 6

Наименование аварии	Мнемоника	Комментарий
Наличие тока при выключенном двигателе, А	E :0	
Токовая перегрузка, с	Eof	Время блокировки прибора 60 с
Максимальный ток фазы, А	E in	
Минимальный ток фазы, А	E 10	
Перенапряжение сети, В	Etlo	Напряжение сети больше 310 В
Максимальное напряжение сети, В	EUñ	
Минимальное напряжение сети, В	EUn	
Максимальная частота сети, Гц	EFŌ	
Минимальная частота сети, Гц	EFn	
Тепловая перегрузка, %	EP5	
Затянутый пуск, А	ELL	
Блокировка ротора, А	ELb	

6.5 Работа УБЗ-115 с дистанционным управлением по входу внешнего датчика

Для использования сигнала пуска и остановки двигателя через вход внешнего датчика необходимо установить значение параметра "¬СР" (таблица 7) отличное от нуля:

- при "¬ [Р"=1 замыкание контактов приведет к пуску двигателя, а размыкание к остановке;
- при "¬ [Р"=2 размыкание контактов приведет к пуску двигателя, а замыкание к остановке.

Если пускать двигатель разрешено (нажата кнопка (рисунок 3 поз. 6) или установлен автоматический пуск двигателя после подачи на него питания (параметр "¬С¬" = 0 или 1)) и на внешнем входе присутствует разрешающий сигнал, двигатель запустится.

Если пускать двигатель разрешено, а на внешнем входе присутствует запрещающий сигнал, то двигатель пускаться не будет, при этом индикатор **НАГРУЗКА** (рисунок 3 поз. 1) вспыхивает с интервалом в 1,2 секунды, указывая, что после появления разрешающего сигнала на внешнем входе, двигатель будет запущен.

УБЗ-115 NOVATEK-ELECTRO

7 ПРОГРАММИРОВАНИЕ

7.1. Общие сведения

Программируемые параметры задаются пользователем и сохраняются при отключении питания в энергонезависимой памяти.

7.1.1 Полный список программируемых параметров

Полный список программируемых параметров приведен в таблице 7.

Таблица 7

ПАРАМЕТР	мнемоника	мин./макс.	ЗАВОДСКАЯ УСТАНОВКА	ДЕЙСТВИЕ
Основные				
Номинальный ток, А	ind	0,5 / 25,0	0	0 – ток не установлен. УБЗ-115 не включит двигатель, пока ток не будет задан.
Время измерения среднего значение тока, с	,GE	10 / 600	60	Время, за которое измеряется среднее значение действующего тока (параметр IRC).
Индикация до пуска двигателя	d5P	0/2	0	0 – отображается напряжение; 1 – отображается частота; 2 – отображается обратный отсчет времени АПВ;
Пароль	PRS	0/999	123	0 – пароль отсутствует, любое другое значение активирует пароль.
Сброс параметров	rSE	0/1	0	0 – действие отсутствует; 1 – сброс параметров на заводские установки.
Версия	uEr.		20	Версия микропрограммы прибора.
Автоматическое повторн	ое включен	ие (АПВ)		
Время АПВ для мин. токовой защиты, с	FUB	5 / 900	600	Время задержки после срабатывания защиты по минимальному току.
Время АПВ, с	ASE	5 / 900	5	Время задержки перед повторным пуском двигателя.
Разрешение работы АПВ	ASr	0/2	2	0 – АПВ запрещено; 1 – АПВ запрещено для всех аварий, кроме аварии по напряжению; 2 – АПВ разрешено для всех аварий.
Управление двигателем			•	
Дистанционный пуск/стоп	45b	0/2	0	0 – дистанционный пуск/стоп запрещены; 1 – ПУСК (внешний вход замкнут), СТОП (внешний вход разомкнут); 2 – ПУСК (внешний вход разомкнут), СТОП (внешний вход замкнут).
Первый пуск	ñΣr	0/2	2	Функционирование УБЗ-115 после подачи на него напряжения питания. 0 – пуск двигателя через время АПВ; 1 – пуск двигателя через 2 секунды; 2 – пуск двигателя с лицевой панели.
Пуск двигателя			1	
Режим пуска двигателя	SEP	0/1	0	0 – обычный пуск; 1 – плавный пуск;
Время пуска двигателя, с	SCE	0,1 / 10,0	1,0	Время, на которое подключается пусковой конденсатор.
Начальная мощность плавного пуска, %	SSP	20 / 100	40	Начальная мощность плавного пуска.
Время плавного пуска, с	SSŁ	0,1 / 5,0	1,0	Время плавного пуска двигателя.
Максимальная токовая за	щита			
Режим работы защиты	iñP	0/2	0	 0 – защита с независимой выдержкой времени; Защита с зависимой выдержкой времени: 1 – SIT (обратнозависимая); 2 – VIT или LTI (очень обратно зависимая);
Кратность срабатывания	iñS	0,8 / 6,0	4,0	Задается кратность по отношению к номинальному току двигателя. (Действует при тпР = 0).

Продолжение таблицы 7

продолжение гаолицы т				
Время срабатывания, с	int	0,3 / 600	10,0	Время срабатывания защиты по току.
Разрешение работы защиты Минимальная токовая заш	ותר	0/2	1	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.
Минимальная токовая зац	цита 	1		Задается в % от установленного
Уставка срабатывания, %	inS	11 / 90	20	Задается в % от установленного номинального тока двигателя ип d.
Время срабатывания, с	int	0,3 / 100	5,0	Время срабатывания защиты по току.
Разрешение работы защиты	ותר	0/2	2	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.
Затянутый пуск и блокиро	вка ротор	oa		
Кратность срабатывания	LLS	1,3 / 6,0	2,0	Задается кратность по отношению к номинальному току.
Время срабатывания при затянутом пуске, с	LLE	1 / 600	10	Время срабатывания защиты при затянутом пуске.
Время срабатывания при блокировке ротора, с	Lbt	0,3 / 300	1,0	Время срабатывания защиты при блокировке ротора.
Разрешение работы защиты	LLr	0/2	1	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.
Тепловая перегрузка	I	1	T	
Время срабатывания, с	P5F	10 / 120	60	Время срабатывания при двукратной перегрузке.
Кратность увеличения	625	1,0 / 4,0	1,0	Кратность увеличения постоянной охлаждения при остановленном двигателе.
Разрешение работы защиты	b2r	0/2	2	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.
Защита по максимальном	у фазному	у напряжению		
Напряжение срабатывания, В		(Un5+10)/ 300	260	Напряжение срабатывания защиты.
Время срабатывания, с	Unt	1 / 60	2	Время срабатывания защиты по напряжению.
Разрешение работы защиты	Uñr	0/2	2	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.
Защита по минимальному	фазному	напряжению	1	
Напряжение срабатывания, В	0-1111	130 / (Uñ5-10)	176	Напряжение срабатывания защиты.
Время срабатывания, с	Unt	1 / 60	10	Время срабатывания защиты по напряжению.
Разрешение работы защиты	Unr	0/2	2	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.

YE3-115 NOVATEK-ELECTRO

Продолжение таблицы 7

Защита по максимальной	частоте			
Максимальная частота, Гц	FAS	(Fn5+0.1) / 62,0	51,0	Максимальная частота, при значении которой срабатывает защита.
Время срабатывания, с	Fint	1 / 60	10	Время срабатывания защиты по частоте.
Разрешение работы защиты	Fār	0/2	1	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.
Защита по минимальной ч	астоте			
Минимальная частота, Гц	FnS	48,0 / (F n 5- 0.1)	49,0	Минимальная частота, при значении которой срабатывает защита.
Время срабатывания, с	Fnt	1 / 60	10	Время срабатывания защиты по частоте.
Разрешение работы защиты	Fnr	0/2	1	0 – работа защиты запрещена; 1 – работа защиты разрешена, АПВ запрещено; 2 – работа защиты разрешена, АПВ разрешено.

7.1.2 Просмотр измеряемых и вычисляемых параметров

Для просмотра измеряемых и вычисляемых параметров необходимо однократно нажать кнопку на дисплее отобразится первый параметр из таблицы 2. Листание параметров осуществляется кнопками , просмотр параметра – кнопка , выход из просмотра параметра – кнопка . При отсутствии нажатий любой из кнопок в течение 20 секунд, УБЗ-115 перейдет в исходное состояние.

7.1.3 Изменение параметров УБЗ-115

Для изменения параметров необходимо нажать и удерживать в течение 7 секунд кнопку [11], при этом:

- Если был установлен пароль, введите его. Изменение значения кнопки , подтверждение ввода пароля кнопка . Отмена ввода пароля при отсутствии нажатий любой из кнопок в течение 20 секунд, УБЗ-115 перейдет в исходное состояние.
- Если введенный пароль верный, включится индикатор **АПВ / МЕНЮ** (рисунок 3 поз.3) и на дисплее отобразится первый параметр из таблицы 7.
- Если введенный пароль неверный, УБЗ-115 вернется в исходное состояние.
- Если значение параметра "РЯ5"=0 проверка пароля не осуществляется. Включится индикатор **АПВ / МЕНЮ** (рисунок 3 поз.3) и на дисплее отобразится первый параметр из таблицы 7.

Листание параметров меню осуществляется кнопками , запись параметра и переход обратно в меню – кнопка , переход обратно в меню без записи – кнопки + . При отсутствии нажатий любой из кнопок в течение 20 секунд, прибор перейдет в исходное состояние.

7.1.4 Восстановление заводских установок

Сброс на заводские установки может осуществляться одним из следующих способов:

- В режиме изменения параметров (п.7.1.3) установить значение параметра "ГБЕ" в 1 и нажать кнопку , при этом произведет перезапуск прибора с установленными заводскими параметрами. В данном случае пароль не сбрасывается.
- Подать напряжение питания на прибор, удерживая одновременно нажатыми кнопки Держать их нажатыми более 2 секунд, при этом на дисплее отобразится надпись "при", отпустить кнопки. Через 6 секунд произойдет перезапуск прибора с установленными заводскими параметрами. В этом случае значение пароля будет установлено по умолчанию ("123").

7.2 Порядок программирования

Для начала работы с УБЗ-115 достаточно установить значение номинального тока двигателя. При необходимости остальные параметры могут изменяться в процессе эксплуатации.

7.2.1 Установка номинального тока двигателя

Согласно п.7.1.3 установить значение параметра " ו " " в соответствии с номинальным током используемого двигателя.

8 КОМПЛЕКТНОСТЬ

В комплект поставки УБЗ-115 входит:

- Универсальный блок защиты УБЗ-115 1 шт; - Руководство по эксплуатации, паспорт 1 шт; - Хомут монтажный 300 х 4 мм 2 шт; - Упаковочная коробка 1 шт.

9 СРОК СЛУЖБЫ И ГАРАНТИЯ ИЗГОТОВИТЕЛЯ

- 9.1 Срок службы изделия 10 лет. По истечении срока службы обратиться к производителю.
- 9.2 Гарантийный срок эксплуатации изделия составляет 36 месяцев с дня продажи.

В течение гарантийного срока эксплуатации производитель производит бесплатно ремонт изделия при соблюдении потребителем требований Руководства по эксплуатации.

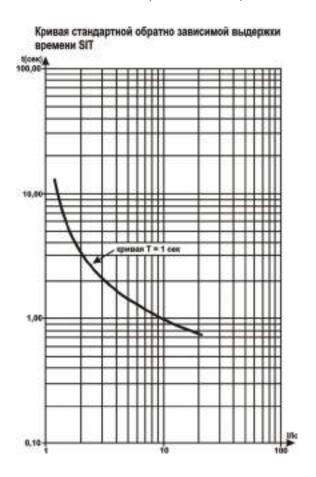
Изделие не подлежит гарантийному обслуживанию в следующих случаях:

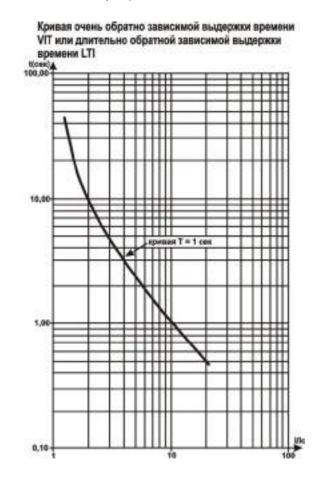
- окончание гарантийного срока;
- наличие механических повреждений;
- наличие следов воздействия влаги или попадание посторонних предметов внутрь изделия;
- вскрытие и самостоятельный ремонт;
- повреждение, вызванное электрическим током либо напряжением, значения которых были выше максимально допустимых, указанных в Руководстве по эксплуатации.
- 9.3 Гарантийное обслуживание производится по месту приобретения.
- 9.4 Гарантия производителя не распространяется на возмещения прямых или непрямых убытков, утрат или вреда, связанных с транспортировкой изделия до места приобретения или до производителя.
- 9.5 Послегарантийное обслуживание (по действующим тарифам) выполняется производителем.

Примечание. Убедительная просьба, при возврате изделия или передаче изделия на гарантийное или послегарантийное обслуживание, в поле сведений о рекламациях (или на отдельном листе) подробно указывать причину возврата.

10 ТРАНСПОРТИРОВАНИЕ

УБЗ-115 в упаковке производителя должен храниться в закрытом помещении с температурой от минус 45 до $+70~^{\circ}$ С и относительной влажностью не более 80 % при отсутствии в воздухе паров, вредно действующих на упаковку и материалы устройства.


При транспортировании УБЗ-115 потребитель должен обеспечить защиту устройства от механических повреждений.


YB3-115 NOVATEK-ELECTRO

ПРИЛОЖЕНИЕ А

Защиты по току с зависимой выдержкой времени

Графики приведены для постоянной времени работы защиты равной 1 секунда (параметр " п с"). При установке другого значения постоянной времени, время срабатывания защиты изменяется пропорционально постоянной времени (например, при " п с"=10 секунд время срабатывания защиты при такой же кратности токов увеличится в 10 раз).

